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Abstract:  
The use of Java for safety-critical development 
appeals because Java’s type system is much more 
rigorous than C and C++.  As an object-oriented 
language, Java’s standard libraries and certain 
language constructs make extensive use of 
temporary objects. One of the challenges with using 
real-time Java for safety-critical development is the 
difficulty of managing memory for temporary objects 
without relying upon a tracing garbage collector. The 
PERC Pico product offers a unique approach to this 
problem, using a combination of programmer-
supplied annotations and an integrated static 
analyzer to guide the PERC Pico code generator to 
perform all temporary object allocations from the run-
time stack rather than depending on heap memory 
allocations.  This paper discusses experience with 
two experimental implementations of a safety critical 
application using the PERC Pico technology. 
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1. Introduction 

DIANA [1], Distributed, equipment Independent 
environment for Advanced avioNics Applications, is 
an aeronautical research and development project 
funded through the European Commission’s 6th 
Framework Programme and led by Skysoft, 
Portugal. It aims at the definition of an advanced 
avionics platform, called AIDA (Architecture for 
Independent Distributed Avionics), supporting 
execution of object-oriented applications over virtual 
machines, secure distribution services, and a tool 
chain supporting model-driven engineering. 
The overall objective of AIDA is to reduce the costs 
of avionics software development thanks to reduced 
development, validation, and integration efforts. 
Time reduction is achieved by using efficient 
infrastructure mechanisms like data distribution 
services inspired by the OMG standard DDS [2]; 
modern development approaches like the use of 
models inspired by the OMG standard Model Driven 
Architecture (MDA) [3] and programming languages 
in combination with an architecturally Neutral 
Execution Platform (NEP) to enable efficient 
software reuse and integration of independently 

developed software components [6]. This paper 
focuses on the benefits of the NEP. 
One of DIANA’s challenges is the deployment of 
Java applications on the AIDA platform. To address 
this challenge, AIDA relies on the PERC Pico 
technology developed by Atego. PERC Pico is an 
original solution addressing concerns raised 
previously [] regarding the memory management 
approaches JSR 302 [5].   Note that JSR 302 aims 
to define a  Java specification for safety critical 
development.  The Atego PERC Pico solution is 
original in the sense that differs slightly from the JSR 
302 approach with respect to the syntaxes used by 
programmers to manage dynamic memory allocation 
and deallocation. The architecture of the AIDA NEP, 
based on PERC Pico, and its tool chain is an 
important topic of this paper.  
In the scope of the DIANA project, Atego has ported 
PERC Pico to the ARINC 653 Application Executive 
[4], the standard real-time operating system 
specification in the avionics domain, so as to ensure 
backward compatibility for ARINC 653 compliant 
applications. Challenges encountered during this 
porting effort concern differences between Java and 
APEX synchronization, priority inversion, and error 
handling behaviors. How these challenges were 
addressed is another important topic of this paper. 
The NEP is validated by two demonstrators 
developed in the scope of the DIANA project:  
a cabin air-conditioning application developed by the 
National Aerospace Laboratory (NLR)   
a simplified Flight Warning System (FWS) developed 
by THALES.  

2. AIDA Neutral Execution Platform 
Concepts 

2.1 Objectives 

The general idea is to set up a process where 
software development would start using full-fledged 
Java (including language constructs, run-time 
environment, Application Programming Interfaces) 
and would move progressively to a real-time version 
of Java. The goals are to  (i) benefit from the many 
features of standard Java to achieve high levels of 
generality and shortened development cycles during 
the initial development phases, and (ii) to benefit 
from the determinism and safety of real-time 
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versions of Java during the later development 
phases.  
This approach is commonly known as separation of 
concerns: we would like the developer to focus on 
functional requirements first, without the burden of 
addressing timeliness or memory usage concerns, 
and consider the real-time resource utilization 
aspects later, after the functional software 
specification and low level design are ―frozen‖.  
 

2.2 AIDA concepts 

AIDA is based on the concepts of Integrated Modular 
Avionics (IMA). Time and space partitioning is 
therefore one of its main architectural characteristics. 
This partitioning separates applications from each 
other by means of memory protection, and time 
slicing according to a fixed cyclic schedule. 
The underlying RTOS is expected to enforce time 
and space partitioning and to provide the ARINC 653 
API (known as the APplication EXecutive or APEX) 
as well as health monitoring of hosted applications. 
No other assumptions are made about the operating 
system (OS). 
AIDA is an interoperability platform. It provides 
support for data exchange and service 
interoperability. The objective is to ease the 
integration of distributed applications. Each partition 
provides or requests data through well-defined 
interfaces and is integrated with other components 
by means of configuration files.  
In the traditional data processing industry, reusability 
is usually understood as code reusability. To achieve 
real commercial advantages in the context of safety-
critical systems, reusability should also cover 
reusability of certification credits [7]. Whereas 
certification reuse for software entities like operating 
systems is reality today, there are still many 
obstacles for applications. One of the problems is 
that an application is not guaranteed to produce the 
same behavior when executed on different 
implementations of an execution environment (like 
an ARINC 653 OS). Because of subtle differences 
between different implementations of the ARINC 653 
standard, for example, certification evidence 
collected for a given safety critical application 
running on one implementation of ARINC 653 
provides no assurances that the same application 
will run in a safe manner on a different 
implementation of ARINC 653. 
  
It does not appear realistic to achieve strict neutrality 
in the near future, and we do not claim to have found 
a complete solution to this problem. Instead, this 
research investigates proposed means to raise the 
level of neutrality. Specifically, the goal is to reduce 
the amount of certification efforts (such as reworking 
of specification, design, code, verification, and 

validation) associated with porting an application 
from one environment to another. 
The use of a Neutral Execution Platform (NEP) to 
decouple the application from the underlying 
execution environment is the key mechanism studied 
in this research.,  This NEP assures that for any 
given set of inputs, the application will produce the 
same outputs on every underlying operating system.  
A limitation of neutrality is that the NEP does not 
necessarily assure that all platforms will produce 
outputs at exactly the same times. 
.  
The NEP is abstractly defined in terms of 
computational states on program level (Initialization, 
Mission, Recovery) and thread level (Dormant, 
Waiting/Blocked, Ready, Running), a scheduling 
policy, and standardized services that provide 
concurrency, memory and time management. This 
abstract specification resembles other specifications 
like the ARINC 653 APEX. However, the NEP is 
meant to avoid platform dependent behavior, 
introduced by differences between implementations 
or special properties of low-level programming 
languages such as the C language.  
The DIANA project exploits the results of other 
European projects, like HIDOORS and HIJA [8], 
proposing Java virtual machines to be used for the 
NEP layer. In the scope of the project, Atego’s safety 
critical Java implementation PERC Pico has been 
selected to act as the AIDA NEP.  

3. PERC Pico concepts  

PERC Pico is a new product offering by Atego, 
designed to address the needs of very low-level and 
safety-critical development with the Java language. 
Structured as a subset of the full Real-Time 
Specification for Java, PERC Pico approaches 
derive from early work within the Open Group to 
establish an open standard for safety-critical 
development with the Java language.  
The initial drafts of the annotation and static analysis 
techniques and the API subset of PERC Pico were 
first developed and published by one of the authors 
(Kelvin Nilsen) in the first half of 2004, in response to 
a request from the Open Group’s Real-Time Forum 
subcommittee on safety-critical Java to design a 
―new memory construct, something beyond immortal 
memory, similar to scoped memory, but without run-
time hazards.‖ In subsequent meetings that same 
year, the approaches were refined in response to 
community feedback.  
A commercial implementation of the proposed 
mechanisms has been available since March 2007 in 
the form of the PERC Pico product by Atego. This 
technology was released for public use in order to 
encourage experimentation and gather industry 
feedback in order to refine the technology and 
influence the emerging standards. 
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To date, the PERC Pico product has not yet been 
deployed in any commercial products. Neither has 
the compiler been qualified nor the run-time 
environment certified to established safety-critical 
guidelines. Currently, the product is used primarily 
for experimentation and research in several 
domains, including applications in rail transport, 
avionics, defence systems, and orbiting satellites. 
Atego highly values the feedback received during 
these experimental studies. As a result of 
interactions with early evaluators, Atego has made 
several refinements to the product, adding support 
for dynamic class loading, adding libraries for 
collections, and refining the specification in order to 
broaden the set of Java programs that are 
considered legal according to the rules of the PERC 
Pico byte-code verifier.  
The early safety-critical Java standardization work 
carried out by the Open Group has been handed 
over to the Java Community Process under JSR-
302, with the Open Group assuming the role of 
specification lead. Work on the JSR-302 standard is 
ongoing. In order to establish consensus on the draft 
standard, the JSR-302 expert group has chosen not 
to seek standardization of certain techniques for 
development of safety-critical Java code. The 
annotation and byte-code verification system 
originally designed and refined within the Open 
Group process is no longer part of the draft JSR-302 
standard. Rather, the draft specification 
acknowledges that many issues that must be 
addressed by a safety-critical developer are not 
addressed in full by the JSR-302 specification. The 
draft JSR-302 standard suggests that developers 
work with development tool and virtual machine 
vendors to address these issues using vendor-
specific (non-standardized) solutions. The annotation 
and verification system provided by PERC Pico is an 
example of such a vendor-specific solution.  
The key issues addressed by the PERC Pico 
annotation system are as follows:  
Assure that scope memory relationship constraints 
associated with all arguments passed in to a method 
are clearly identified so that all users of the method 
understand the constraints required for reliable 
execution of the method.  
Assure that all arguments passed to a method 
satisfy the scope memory relationship constraints 
associated with the invoked method.  
Reduce the syntactic clutter associated with entering 
and exiting scopes and establishing scope sizes, 
with the objective of making code more readable and 
more maintainable and reducing the opportunity for 
human error.  
Enable modular composition and maintainability of 
real-time software components by establishing clear 
separation of concerns between independently 
developed software modules, by inhibiting 

incompatible evolution of independently maintained 
software modules, and by automating the budgeting 
of resources (such as memory and CPU time) that 
may be shared between multiple independently 
maintained modules.  
 
PERC Pico builds on the notion of the Real-Time 
Specification for Java’s (RTSJ) ScopedMemory. 
However, allocating, entering, and exiting scopes is 
implicit, controlled by syntactic annotations instead 
of explicit API calls. Conceptually, every method 
introduces a new private scope. However, no scope 
is created for methods that perform no local 
allocations. Besides simplifying the syntax, the main 
benefit of this approach is that it enables 
unambiguous static analysis of code to determine 
which scopes are relevant to each memory 
allocation request. If the RTSJ ScopedMemory APIs 
were exposed to the developer, the static analyzer 
would need to determine for each new memory 
allocation request the API invocation history that 
precedes the allocation in order to determine which 
scope is to supply memory for the allocation. 
Theoretically, this reduces to the halting problem, 
which is generally understood to be unsolvable by a 
static analysis tool.  
PERC Pico uses Java 1.5 meta-data annotations to 
augment the traditional Java type system with 
information describing the scoped memory 
constraints associated with method arguments and 
results. Consider the following class definition as an 
example: 
 
public class Complex { 
 float r, i; 
 @ScopedThis 
 public Complex(float r, float i) { 
  real = r; imaginary = i; 
 } 
 @CallerAllocatedResult @ScopedPure 
  public multiply(Complex arg) { 
  float r, i; 
  r = this.r*arg.r – this.i*arg.i; 
  i = this.r*arg.i + this.i*arg.r; 
  return new Complex(r, i); 
 } 
} 
 
The Complex constructor is declared @ScopedThis, 
indicating the programmer’s intention to allow this 
constructor to apply to Complex objects allocated 
within ScopedMemory.  The PERC Pico verifier 
enforces that the body of this constructor does 
nothing with its implicit this argument that would 
violate the expectation that the constructed object 
may have a temporary lifetime.  In particular, the 
verifiers forbids the constructor from saving the value 
of this in any static variables or in any instance fields 
associated with objects that cannot be proven to 
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have a shorter lifetime than the constructed object 
itself.  The multiply() method is declared to treat both 
this and arg as possibly residing in scoped memory.  
Furthermore, the @CallerAllocatedResult annotation 
denotes that the result returned from multiply() is 
allocated in a scope external to the method itself.   
Code written to satisfy the PERC Pico verifier will 
also run on a standard edition Java virtual machine, 
using heap allocation and garbage collection to 
manage temporary objects, provided that all of the 
referenced libraries are available.  Based on 
programmer-supplied annotations, the PERC Pico 
verifier determines whether there is a compatible 
sizing and use of memory scopes that would enable 
the same code to run reliably in an environment that 
uses ScopedMemory rather than garbage collection 
to satisfy temporary memory allocation needs.  In 
performing this analysis, the PERC Pico verifier 
automatically determines for each memory allocation 
which scope to take the memory from.  Its 
preference is generally to satisfy every memory 
allocation from the most local scope that is relevant 
to the request. 
Assume existence of a static method declared as 
shown below: 
void doComplex(Complex arg); 
Note that the argument is not declared to be 
@Scoped.  Suppose the PERC Pico verifier is 
tasked with analyzing the following code sequence: 
 

Complex a, b, i; 
 
a = new Complex(3.5, 2.4); 
i = new Complex(0, 1); 
b = i.multiply(i); 
doComplex(a); 

 
Note that the above code allocates three Complex 
objects which it assigns respectively to the a, i, and b 
variables. The PERC Pico verifier’s goal in this case 
is to prove that it is safe to perform all allocations 
within this method’s local scope. The verifier 
identifies a problem when it observes that the 
temporary object assigned to local variable a is 
passed as an argument to the doComplex() method.  
Since that method does not declare its argument to 
be @Scoped, the verifier concludes that in this 
context, it is not safe to allocate object a in 
ScopedMemory.  In response to the error message 
produced by the PERC Pico verifier, the programmer 
has two options.  Either he can annotate this context 
to allow the object a to be allocated in 
ImmortalMemory, or he can add the @Scoped 
annotation to the argument of doComplex() and then 
deal with any additional issues that might surface 
within the implementation of doComplex() as a result 
of making that change. 
 

4. The Avionics demonstrator 

4.1 Objectives 

Within the DIANA project, two demonstrators have 
been developed to exercise and validate the 
project’s specific mechanisms including the NEP, the 
configuration selection mechanisms, the 
communication middleware, and others. In this 
context, the demonstrator developed by THALES 
DAv (Avionics Division) is strongly focused on the 
use and  benefits of Java as the backbone of the 
NEP.  
THALES interest on Java is not new. In particular, 
the work presented in this paper is the continuation 
of previous achievements in the HIJA European 
project [9]. Our main objective is actually to (i) 
contribute to the acceptance of Java as a language 
for embedded real-time systems, and (ii) validate the 
feasibility of a ―smooth‖ and iterative development 
process based on Java.  
Concerning the latter point, we experimented with a 
process where software development starts using 
full-fledged Java (including language constructs, full 
run-time, and the complete standard edition Java 
libraries) and moves incrementally to a constrained 
version of Java. In this experiment, constraints are 
essentially targeted towards a better determinism of 
memory management, in time and space. This way, 
we expect (i) to benefit from the many features of 
standard Java to achieve a high level of generality 
and ease of development during the initial project 
phases, and (ii) to benefit from the determinism and 
safety of real-time versions of Java during the later 
development phases.  
For instance, we would like the developer to focus 
on the functional requirements first, without the 
distraction of worrying about timeliness or memory 
usage. Once the software specification and low-level 
design are frozen, developers turn their attention to 
the real-time constraints on time and memory 
resources. This approach represents an application 
of the general software engineering principle known 
as separation of concerns. 
As an introduction to this topic, several questions are 
addressed below: 

 There is a general tendency to organize 
software development around models and their 
cohorts of semi-formal languages, one clear 
objective being to facilitate the automatic 
generation of code. In that context, is the choice 
of a programming language still an important 
issue?   
Indeed, automatic code generation is effectively 
a very efficient means to shorten the 
―specification to product‖ path. However, this is 
only a practical solution for few parts of most 
applications (e.g., framework-generated code), 
or most parts of few applications (e.g., SCADE-
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generated code). In particular, it does not seem 
to be a solution for applications involving 
complex data structures and data processing. As 
of today, and for the next few years, manual 
coding is still the only solution for most 
developments.    

 Assuming that the programming language is 
actually an issue, why use Java instead of Ada 
95, Ada 2005, or C?. Even though such question 
is legitimate, we will not discuss it. The choice of 
a programming language is subjective. This 
topic is discussed at length in other forums. In 
the context of our experiment, we simply 
considered the opinion of the people in charge of 
prototyping new functions in our service: they 
selected Java for some reasons, and we 
consider those reasons to be good.  

 The proposed approach seems to rely on the 
existence of a continuous transformation 
process starting from some ―quick-and-dirty‖ 
code and ending, magically, with some high 
quality code. Isn’t it contradictory with all usual 
and admitted practices?   
In fact, we are certainly not promoting such a 
practice. In our context, ―transformation‖ means 
the ―progressive‖ introduction of concerns at the 
most appropriate phase of the development 
process. Stated another way, we simply want 
efforts to be focused on the most important and 
unstable ―functional‖ aspects first, and then on 
the other, ―non-functional‖ transverse aspects. 
Naturally, this operation will require refactoring, 
recoding, retesting etc. but we expect the 
benefits to be worth the additional efforts. 

 
4.2 The target application 
For the demonstration purposes, we selected the 
core of the Flight Warning System (FWS) as the 
target application. Briefly, the FWS performs the 
following main functions:  
It acquires state data from other aircraft systems and 
determines the occurrence of an abnormal or 
emergency situation  
It elaborates and manages warning and cautions 
alert messages that are displayed on the Engine and 
Warning Display (EWD) 
It manages the interaction with the crew, via 
attention-getter means (aural, master warning light, 
master caution light) and a set of buttons located on 
the Electronic Flight Control Panel (EFCP). The first 
phase is data input and simple computations.  In the 
actual product, this code is generated automatically 
from a semi-formal SCADE model and using Java 
would not bring any significant benefits. So, the 
experiment focused the second and third phases.  
During our experiment, focus has been placed on 
memory management. In particular, many important 

aspects such as threading, inter-process 
communication, or testability have not been 
addressed. 
The FWS shows fairly simple data flow and object 
creation / destruction profile: object creations occur 
essentially during an initialization phase that sets up 
all the internal data structures representing the 
alerts, their relationships (priority), their associated 
messages, their aspect (e.g., color).  
It also shows a very simple threading model; the 
application uses a single periodic thread that 
acquires the equipment state (including buttons), 
determines the new alerts, manages the actions of 
the crew and generates messages to be displayed.  
Consequently, extrapolations of evaluation results to 
other applications, especially more complex ones,  
must be done with extreme care. 
The FWS development was a very good illustration 
of our approach. Indeed, a first version of the 
application written in standard Java was already 
available. It had been developed to confirm 
customers’ requirements, and validate particular 
design choices. 
The experiment carried out in DIANA essentially 
focus on memory management aspects, for the 
following reasons: 
Memory management is a complex and error prone 
task. Any feature that simplifies this task is 
considered to have a strong impact on productivity 
and quality. 
Memory management is often mentioned as one of 
the most important reasons not to use Java in 
embedded systems. 
Memory management is the domain where Pico is 
the most innovative. Note that the applicability and 
the application cost of recommended practices for 
the usage of object oriented language in avionics — 
such as those defined in the OOTiA guidelines [10] 
— have not been considered yet. We consider that, 
for the most part, those constraints do not depend on 
the programming language and, consequently, are 
not impacted by the selection of Java instead of 
Ada95, for instance. 
 
4.3 How we used PERC Pico 
Our activity has essentially been a porting activity, 
i.e., the adaptation of an existing code to make it 
comply with some real-time constraints. Some 
specific development was required when the 
platform mechanisms (e.g., serialization) or API 
(e.g., containers) used by the original software were 
not provided by PERC Pico or were not stable 
enough. In that case, development was kept as 
simple as possible.  
During this porting process, we imposed on 
ourselves a constraint to minimize the modifications 
to the original Java application, so as to be as 
representative as possible of the way we would 
actually use Pico in our anticipated operational 
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context. This is a very important point, since it 
means that we have had to solve issues rather than 
simply preventing them. 
Thanks to the simplicity of the application, our 
difficulties have been concentrated on two points: to 
ensure referential integrity, and to estimate memory 
usage. 
 
4.3.1 Ensuring referential integrity 
Referential integrity is guaranteed when the 
application passes all verifications applied by Pico’s 
verifier tool. To achieve this objective, we adopted a 
very pragmatic, iterative, approach relying on the 
information provided by the PERC Pico verifier and 
on our knowledge of the application: 

 Use previous verification results (if any) and 
operational knowledge of the application to 
initiate or refine the application’s annotations 

 Check annotations using Pico’s verifier 

 If all checks pass or if no error diagnosis has 
disappeared since the previous verification, go 
to next phase, otherwise, loop to phase 1 

 Analyze all remaining irreducible error diagnosis 
and demonstrate that they correspond to 
conditions that can never occur in operation. By 
―demonstration‖, we mean the provision of a 
sufficient set of convincing elements. In the case 
that developers are able to assert that the PERC 
Pico verifier is overly concerned about certain 
issues, the developers insert additional 
annotations to advise the PERC Pico verifier to 
relax its normal enforcement in these special 
circumstances. 

 
To initiate the process (first phase 1), we perform a 
first and rough annotation phase where:  

 We first identify all objects whose life spans the 
lifetime of the application, and we place them in 
immortal memory. For the remaining objects, we 
analyze the benefit/cost of putting them in 
immortal memory, both from a memory sizing 
point of view and from the impact of this choice 
to the allocation site of potentially related 
objects.  

 Once the previous phase is complete, only 
scoped objects remain. So we identify captive 
references to scoped objects. A captive 
reference is one that is known not to escape the 
context in which it was allocated. To do so, we 
use both a manual (and painful) analysis of the 
code’s data flow, and the verifier itself. In the 
latter case, we put the strongest constraint 
(―captive scoped‖) on arguments and relax those 

constraints (to ―scope‖) until the analyzer does 
not reveal any more error.  

 
If this solution is ―pragmatic‖, it is costly, and clearly 
not acceptable for a new development. In our 
specific case, this was really helpful since the 
relations between objects in the existing application 
were not fully formalized and described. Important 
methodological questions about the way lifespans of 
objects must be considered during design and 
coding would deserve further studies. Provision of 
design patterns would certainly help.  
 

4.3.2 Estimating memory usage 
As of today, PERC Pico does not provide an 
automatic and static means to estimate memory, 
though the capability has been designed and is 
anticipated in a future product release. Instead, it 
currently relies on software developers to insert 
scope sizing annotations or invocations of memory 
estimation methods (―sizer()―) and objects 
(‖SizeEstimators―). These elements are used to 
modularize memory estimation, and provide an 
upper-bound of memory usage taking into account 
all state variables that may have an impact on 
memory usage, including the sizes of all classes that 
might need to be instantiated within this scope. In 
practice, we first estimate a lower bound of memory 
usage by observing the worst case heap usage on a 
standard virtual machine. Once this information is 
obtained, each class is adorned with an appropriate 
―sizer‖ method which may refer to other classes’ 
sizers, recursively. 
A difficulty here lies in the fact that to estimate the 
size of memory areas, one has to know in which of 
these memory areas PERC Pico decides to place 
the objects. 
 
4.4 Benefits and issues 
4.4.1 Benefits 
Transition from standard Java to PERC Pico 
requires very few modifications of the original 
software architecture and code. In particular, the 
application remains mainly free from memory 
management code (creation, deletion). Even though 
―sizer()― methods‖ or ―SizeEstimators― objects are 
needed to support memory usage estimation, they 
interfere only lightly with the application code. This 
has to be compared to the RTSJ where memory 
management is essentially under the developer’s 
control: he / she has to create the scoped memory 
areas, to create the Runnable covering the code to 
be executed in the memory area, to enter the scope, 
to take care of the reference transfers between 
memory areas, etc.  
Capability to run PERC Pico annotated Java code on 
a standard Java virtual machine via some simple API 
stubbing is another interesting property. It makes it 
very easy to execute regression tests using all the 
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capabilities of a standard Java platform. It also 
allows a very easy switching between the standard 
Java and PERC Pico development phases. 
Furthermore, it ensures the ported code to be usable 
in any Java platform, including those that rely on a 
real-time garbage collector. 
PERC Pico supports a modular management of 
memory. Modularity is supported by the annotation 
scheme which is used to express a memory 
management contract between a method user and a 
method provider. This represents a significant 
advantage to the RTSJ’s scopes, which introduce 
strong and implicit dependencies between different 
code parts, and makes the application very fragile. 
The PERC Pico verifier guarantees that no 
referential integrity problem will ever occur once the 
verification is successful. This represents another 
significant advantage with respect to a RTSJ 
platform which cannot ensure the absence of 
referential integrity errors at compile time. Instead, it 
relies on runtime checks and appropriate exception 
handling by the user. Even though handling the 
exception allows a safe and smooth handling of 
errors, it does not ensure per se the correct behavior 
of the software. We have then to compare the extra 
development cost (annotations) of PERC Pico to the 
extra design and verification cost of the RTSJ, taking 
into account the fact that in the latter case, there will 
be no guarantee for safety.   
 
4.4.2 Issues 
The PERC Pico learning curve is steep, for various 
reasons, among which: 

 The concepts, Pico is based on, are complex. 
They must be supported by a clear and rigorous 
documentation written for the end-user, that is to 
say the application developer.  

 Translating those concepts into code is another 
difficulty that could well be alleviated thanks to 
design, coding patterns, or tools.  

 Errors signaled by PERC Pico are hard to 
diagnose and correct. More often than not, one 
has to ―play the role of the verifier‖ to understand 
why a particular error message is reported. 

 
The latter issue is even more critical when 
considering the apparent pessimism of the analysis 
which translates to the following frequent 
observation: The verifier rejects this assignment 
even though I know that the assignment will always 
comply with the RTSJ referential integrity condition. 
In fact, the analyzer can only deduce potential errors 
from the information it has access to, i.e., the 
annotations and the code, just as any compiler 
would. So, the more expressive the annotations are 
the more accurate is the diagnosis. The lack of 

expressiveness of annotations, grounded to some 
extent to the limits of Java annotation mechanism, 
eventually leads the developer to consider the 
diagnosis as a ―false positive‖ (to use a terminology 
borrowed from the abstract interpretation domain, in 
a way slightly abusive)2, whereas it is simply a direct 
consequence of the interpretation of the annotations. 
Additionally, if the approach based on ―local‖ 
annotations expressing ―local‖ properties is imposed 
by the requirement for modularity, it also leads to 
conservative estimation if those properties are 
insufficiently accurate. In practice, this means that 
the verifier may reject a statement because it 
believes (from what it ―knows‖) that referential 
integrity cannot be ensured whereas the developer 
knows it for sure. Intuitively, the remedy seems to 
depend on an improvement the code annotation 
scheme, to allow more information to be provided by 
the developer to the analyzer, in the same way as a 
programming language with a sophisticated typing 
system will support a much better diagnosis than a 
language loosely typed, considering the same target 
level of safety at the end.  
A ―pessimistic diagnosis‖ is acceptable as long as 
(i) it does not occur too often and (ii) the difficulty to 
demonstrate that no failure can ever occur in 
operation despite the diagnosis is reasonable.  
Unfortunately, as of today, whenever the analyzer 
rejects a piece of code, a great deal of energy must 
be spent to understand the problem, to demonstrate 
its innocuousness or to refactor the code or the 
annotations to make it disappear. One clearly needs 
indication and hints to track the ―origin‖ of the 
diagnosis. 
Generally speaking, the other, and certainly better, 
solution would be for the designer to carefully take 
into account memory management constraints 
during the design, so as to ease the task of the 
―verifier‖ later3. However, this was not the context of 
our experiment, which takes as a working hypothesis 
to minimize the refactoring of the code. 
The estimation of memory usage is another point 
where things could be improved. Currently, PERC 
Pico’s documented annotations and mechanisms to 

                                                      
2 Developers familiar with traditional static analysis or 

abstract interpretation tools tend to view PERC Pico’s 
conservative enforcement of constraints as a 
misunderstanding of their intent. PERC Pico’s support 
team tends to view this situation as an inconsistency 
between intent and annotation, requiring that 
programmers enhance or refine the annotations. This 
conflict of perspective highlights the subtle complexity of 
the verification system. 

3 In fact, the issue is more fundamental: PERC Pico relies 

on a computational model (a stack automaton) that is not 
as expressive as the one of standard Java (a Turing 
machine). In practice, this means that the ―translation‖ of 
code may simply be impossible without a strong 
refactoring. 
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support static analysis of memory usage seem to be 
very promising but, unfortunately, they are not fully 
implemented. So, the developer ends up with code 
for which referential integrity is verified, but for which 
some memory allocation constraints may be 
violated, leading to, potential, very bad effects at the 
application level. So, and until Pico’s memory 
estimation mechanisms are fully implemented, 
memory dimensioning still requires a ―classical‖ 
verification approach (testing, inspection, etc.) which 
is certainly simpler than ensuring referential integrity, 
but which deserves a specific testing strategy. 
Furthermore, if memory usage estimation is 
―relatively‖ easy when the location of allocations is 
managed by the user, it is much harder when these 
locations are determined by the compilation chain.  
Besides time and memory determinism, which have 
been addressed previously, certification, more 
generally, concerns compliance of Pico’s runtime 
and libraries with the DO178 (currently, issue B and 
soon, issue C) objectives. This current version of 
PERC Pico does not come with any qualification 
case. However, even if we cannot show the artifacts 
required for certification (SDP, PSAC, SAS, etc.), 
data provided by Atego give hints on the fact that 
they could be obtained, and at a reasonable cost: 
The runtime represents around 6700 Lines of Code 
(LOC).  
For the C part, the runtime represents around 2700 
LOC (2000 LOC for ―port.c‖, which is customized for 
each operating system and 700 for platform.c). 
The API represents around 27000 LOC for java.lang 
package, and 13000 LOC for the sc package. 
 
These values are reasonable small with respect to 
the size of the applications themselves. 
A more controversial point concerns the qualification 
level of the code generator and verifier. In particular, 
to what extent can we take credit from the 
verifications performed by the verifier to reduce the 
test activities on the generated code? 
This questions leads to two observations. First, the 
complexity of the properties to be verified makes it 
very hard to trust the completeness of Pico’s 
verifications, even though those properties are 
expressed at length in Pico’s documentation. As the 
verifier not only checks compliance with referential 
integrity, but also manages the allocations, this 
process shall come with strong evidences that it is 
built on a sound —possibly, mathematical — basis. 
Second, verification and code generation processes 
seem to be tightly coupled: the code generator uses 
information provided by the code verifier to 
determine the scope. So, if there is an error in the 
verifier, (i) an error in the source code may be left 
undetected (the verifier is considered as a 
verification tool), (ii) the generated code itself may be 
erroneous (the verifier is considered as a part of the 
code generation process). It would be highly 

desirable to have a tighter integration between the 
PERC Pico verifier and the PERC Pico code 
generator, and to ―qualify‖ this integration for use by 
safety critical developers. 
More fundamentally, it seems that one can hardly 
consider Pico’s verifier to be a ―classical‖ verification 
tool according to the DO178 definition, so submitted 
to the significantly relaxed verification constraints. 
Indeed, the probability to introduce an error at 
memory management level (e.g., a reference 
assignment that violates referential integrity or a 
memory allocation that is lower than the actual 
memory usage) is (i) very high, and (ii) the error 
detection coverage of such errors by testing is fairly 
low. Consequently, even though a double error is 
needed for an error to show in the product, the 
probability of such event cannot be considered 
negligible.   
Finally, since PERC Pico’s static verifier does not 
operate on the final object code but on the 
intermediate Java byte code, verification activities 
targeted to memory management errors and applied 
on the final object code are still necessary. A testing 
strategy focused on memory management needs to 
be defined. 
We end this brief analysis of PERC Pico’s pros and 
cons by a last point about standardization. In effect, 
PERC Pico does not comply with the RTSJ or the 
future SCSJ standard (which is based on the RTSJ). 
From the strict perspective of porting standard Java 
applications, this should not be so strong an issue 
since the standard Java version of an application 
and the PERC Pico version only differ at annotation 
level.  In this regard, moving from PERC Pico to the 
SCSJ (JSR-302) will be no more complicated than 
moving from standard Java to the RTSJ. However, 
this divergence is actually a problem in the general 
case. Convergence of PERC Pico APIs to the SCSJ, 
and the capability to make both SCSJ and PERC 
Pico applications to cohabit in different SCSJ 
missions would offer an opportunity to benefit from 
both technologies.  Atego has announced that this is 
their intended evolution of PERC Pico once the JSR-
302 standard is finalized. 

5. Conclusion 

In this paper, we have briefly presented the main 
features, some specific porting aspects and some 
evaluation results of PERC Pico, Atego’ 
implementation of Java for real-time safety critical 
systems. 
Java and its implementation in PERC Pico is a key 
technological brick of DIANA’s neutral execution 
platform. It decouples the application code from the 
execution platform in a more complete way than any 
application / executive API would. The development 
of the JVM to APEX interface raises few difficulties 
concentrated on very few points, such as threading 
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and priority inheritance in particular. This work being 
done, PERC Pico can now be used on any APEX 
compliant platform.  
Concerning the application to JVM interface, PERC 
Pico’s modular approach of memory management 
supports a smooth transition from a code using 
standard Java memory management model to a 
code compatible with the safety and determinism 
constraints of real-time avionics systems. This was 
an important objective of the experiment.  
PERC Pico relies on a simple memory model, a set 
of annotations, and a powerful static verification tool. 
It is expected to compare advantageously to 
solutions based on scoped memory, in particular 
when modularity and runtime safety — or, the other 
way round, testing effort — are concerned.  
However, an important effort is necessary to become 
familiar with the PERC Pico concepts, and become 
proficient in their application. For the most part, this 
is due to the difficulties to understand the verifiers’ 
diagnostics, and to translate them to corrections at 
the application level. This leads to the paradoxical 
situation where memory management issues are first 
removed from the developer considerations, but 
reintroduced in a later development phase. In this 
later development phase, it becomes necessary to 
insert scope annotations, dimension the sizes of 
memory areas, and deal with any ―false positive‖ 
error messages reported by the PERC Pico verifier. 
The challenges of this later development phase 
significantly reduce the potential benefits of the 
approach.  
Concerning certification, although this aspect has not 
been completely covered yet, the simplicity of PERC 
Pico should strongly limit the effort to establish a 
qualification case. However, some interrogations 
remain concerning the completeness of the 
verifications performed by PERC Pico verifier, the 
relation between code production and verification, 
and the actual qualification credit that can be sought 
using this tool. 
A programming language is a long-term investment. 
To introduce a new language, many aspects shall be 
taken into account: technical aspects such as 
expressiveness, performance, robustness, safety, 
etc., but also non technical aspects such as 
availability of educated developers, availability and 
maintainability of development environments, tools, 
libraries, etc. Regarding many of those aspects, 
Java is a very good candidate, and some important 
and recurrent criticisms of Java are now obsolete 
thanks to the combined efforts on virtual machines, 
verification means, and runtime libraries. What is still 
missing for a wider acceptance of Java in the 
mission critical domain is a common and 
collaborative effort of industrial partners and 
technology providers towards a runtime and a set of 
API components developed according to applicable 

development standards (e.g., DO178C, CEI 61508 
and derivatives).   
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8. Glossary 

AIDA:  Architecture for Independent Distributed Avionics 

APEX:  ARINC 653 Application Executive 

ARINC 653: Avionics Application Software Standard 

Interface 

FWS:  Flight Warning System 

JVM:  Java Virtual Machine 

JSR 302:  Java Specification Request  in charge of 

defining the Safety Critical Specification for Java  

NEP:  Neutral Execution Platform 

PERC Pico: Virtual Machine for Java real-time and 
safety critical systems 

RTSJ:  Real Time Specification for Java 

SCSJ:  Safety Critical Specification for Java 
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