
 Page 1/9

Use of PERC Pico for Safety Critical Java

A. Marc Richard-Foy1, B. Tobias Schoofs2, C. Eric Jenn3, D. Ludovic
Gauthier1, E.Kelvin Nilsen4

1: Atego SAS, 143 bis avenue de Verdun, 92442 Issy-les-Moulineaux cedex, France
2: GMV-Skysoft Portugal, Av. D. João II, Lote 1.17.02, Torre Fernão Magalhães -7°, 1998-025, Lisboa - Portugal

3: Thales Aerospace Division, 105, av. Eisenhower, 31036 Toulouse, France
4: Atego, 125 E. Main St., #501, American Fork, UT 84003, USA

Abstract:
The use of Java for safety-critical development
appeals because Java’s type system is much more
rigorous than C and C++. As an object-oriented
language, Java’s standard libraries and certain
language constructs make extensive use of
temporary objects. One of the challenges with using
real-time Java for safety-critical development is the
difficulty of managing memory for temporary objects
without relying upon a tracing garbage collector. The
PERC Pico product offers a unique approach to this
problem, using a combination of programmer-
supplied annotations and an integrated static
analyzer to guide the PERC Pico code generator to
perform all temporary object allocations from the run-
time stack rather than depending on heap memory
allocations. This paper discusses experience with
two experimental implementations of a safety critical
application using the PERC Pico technology.

Keywords: language, ARINC 653, Java, safety,
certification

1. Introduction

DIANA [1], Distributed, equipment Independent
environment for Advanced avioNics Applications, is
an aeronautical research and development project
funded through the European Commission’s 6th
Framework Programme and led by Skysoft,
Portugal. It aims at the definition of an advanced
avionics platform, called AIDA (Architecture for
Independent Distributed Avionics), supporting
execution of object-oriented applications over virtual
machines, secure distribution services, and a tool
chain supporting model-driven engineering.
The overall objective of AIDA is to reduce the costs
of avionics software development thanks to reduced
development, validation, and integration efforts.
Time reduction is achieved by using efficient
infrastructure mechanisms like data distribution
services inspired by the OMG standard DDS [2];
modern development approaches like the use of
models inspired by the OMG standard Model Driven
Architecture (MDA) [3] and programming languages
in combination with an architecturally Neutral
Execution Platform (NEP) to enable efficient
software reuse and integration of independently

developed software components [6]. This paper
focuses on the benefits of the NEP.
One of DIANA’s challenges is the deployment of
Java applications on the AIDA platform. To address
this challenge, AIDA relies on the PERC Pico
technology developed by Atego. PERC Pico is an
original solution addressing concerns raised
previously [] regarding the memory management
approaches JSR 302 [5]. Note that JSR 302 aims
to define a Java specification for safety critical
development. The Atego PERC Pico solution is
original in the sense that differs slightly from the JSR
302 approach with respect to the syntaxes used by
programmers to manage dynamic memory allocation
and deallocation. The architecture of the AIDA NEP,
based on PERC Pico, and its tool chain is an
important topic of this paper.
In the scope of the DIANA project, Atego has ported
PERC Pico to the ARINC 653 Application Executive
[4], the standard real-time operating system
specification in the avionics domain, so as to ensure
backward compatibility for ARINC 653 compliant
applications. Challenges encountered during this
porting effort concern differences between Java and
APEX synchronization, priority inversion, and error
handling behaviors. How these challenges were
addressed is another important topic of this paper.
The NEP is validated by two demonstrators
developed in the scope of the DIANA project:
a cabin air-conditioning application developed by the
National Aerospace Laboratory (NLR)
a simplified Flight Warning System (FWS) developed
by THALES.

2. AIDA Neutral Execution Platform
Concepts

2.1 Objectives

The general idea is to set up a process where
software development would start using full-fledged
Java (including language constructs, run-time
environment, Application Programming Interfaces)
and would move progressively to a real-time version
of Java. The goals are to (i) benefit from the many
features of standard Java to achieve high levels of
generality and shortened development cycles during
the initial development phases, and (ii) to benefit
from the determinism and safety of real-time

 Page 2/9

versions of Java during the later development
phases.
This approach is commonly known as separation of
concerns: we would like the developer to focus on
functional requirements first, without the burden of
addressing timeliness or memory usage concerns,
and consider the real-time resource utilization
aspects later, after the functional software
specification and low level design are ―frozen‖.

2.2 AIDA concepts

AIDA is based on the concepts of Integrated Modular
Avionics (IMA). Time and space partitioning is
therefore one of its main architectural characteristics.
This partitioning separates applications from each
other by means of memory protection, and time
slicing according to a fixed cyclic schedule.
The underlying RTOS is expected to enforce time
and space partitioning and to provide the ARINC 653
API (known as the APplication EXecutive or APEX)
as well as health monitoring of hosted applications.
No other assumptions are made about the operating
system (OS).
AIDA is an interoperability platform. It provides
support for data exchange and service
interoperability. The objective is to ease the
integration of distributed applications. Each partition
provides or requests data through well-defined
interfaces and is integrated with other components
by means of configuration files.
In the traditional data processing industry, reusability
is usually understood as code reusability. To achieve
real commercial advantages in the context of safety-
critical systems, reusability should also cover
reusability of certification credits [7]. Whereas
certification reuse for software entities like operating
systems is reality today, there are still many
obstacles for applications. One of the problems is
that an application is not guaranteed to produce the
same behavior when executed on different
implementations of an execution environment (like
an ARINC 653 OS). Because of subtle differences
between different implementations of the ARINC 653
standard, for example, certification evidence
collected for a given safety critical application
running on one implementation of ARINC 653
provides no assurances that the same application
will run in a safe manner on a different
implementation of ARINC 653.

It does not appear realistic to achieve strict neutrality
in the near future, and we do not claim to have found
a complete solution to this problem. Instead, this
research investigates proposed means to raise the
level of neutrality. Specifically, the goal is to reduce
the amount of certification efforts (such as reworking
of specification, design, code, verification, and

validation) associated with porting an application
from one environment to another.
The use of a Neutral Execution Platform (NEP) to
decouple the application from the underlying
execution environment is the key mechanism studied
in this research., This NEP assures that for any
given set of inputs, the application will produce the
same outputs on every underlying operating system.
A limitation of neutrality is that the NEP does not
necessarily assure that all platforms will produce
outputs at exactly the same times.
.
The NEP is abstractly defined in terms of
computational states on program level (Initialization,
Mission, Recovery) and thread level (Dormant,
Waiting/Blocked, Ready, Running), a scheduling
policy, and standardized services that provide
concurrency, memory and time management. This
abstract specification resembles other specifications
like the ARINC 653 APEX. However, the NEP is
meant to avoid platform dependent behavior,
introduced by differences between implementations
or special properties of low-level programming
languages such as the C language.
The DIANA project exploits the results of other
European projects, like HIDOORS and HIJA [8],
proposing Java virtual machines to be used for the
NEP layer. In the scope of the project, Atego’s safety
critical Java implementation PERC Pico has been
selected to act as the AIDA NEP.

3. PERC Pico concepts

PERC Pico is a new product offering by Atego,
designed to address the needs of very low-level and
safety-critical development with the Java language.
Structured as a subset of the full Real-Time
Specification for Java, PERC Pico approaches
derive from early work within the Open Group to
establish an open standard for safety-critical
development with the Java language.
The initial drafts of the annotation and static analysis
techniques and the API subset of PERC Pico were
first developed and published by one of the authors
(Kelvin Nilsen) in the first half of 2004, in response to
a request from the Open Group’s Real-Time Forum
subcommittee on safety-critical Java to design a
―new memory construct, something beyond immortal
memory, similar to scoped memory, but without run-
time hazards.‖ In subsequent meetings that same
year, the approaches were refined in response to
community feedback.
A commercial implementation of the proposed
mechanisms has been available since March 2007 in
the form of the PERC Pico product by Atego. This
technology was released for public use in order to
encourage experimentation and gather industry
feedback in order to refine the technology and
influence the emerging standards.

 Page 3/9

To date, the PERC Pico product has not yet been
deployed in any commercial products. Neither has
the compiler been qualified nor the run-time
environment certified to established safety-critical
guidelines. Currently, the product is used primarily
for experimentation and research in several
domains, including applications in rail transport,
avionics, defence systems, and orbiting satellites.
Atego highly values the feedback received during
these experimental studies. As a result of
interactions with early evaluators, Atego has made
several refinements to the product, adding support
for dynamic class loading, adding libraries for
collections, and refining the specification in order to
broaden the set of Java programs that are
considered legal according to the rules of the PERC
Pico byte-code verifier.
The early safety-critical Java standardization work
carried out by the Open Group has been handed
over to the Java Community Process under JSR-
302, with the Open Group assuming the role of
specification lead. Work on the JSR-302 standard is
ongoing. In order to establish consensus on the draft
standard, the JSR-302 expert group has chosen not
to seek standardization of certain techniques for
development of safety-critical Java code. The
annotation and byte-code verification system
originally designed and refined within the Open
Group process is no longer part of the draft JSR-302
standard. Rather, the draft specification
acknowledges that many issues that must be
addressed by a safety-critical developer are not
addressed in full by the JSR-302 specification. The
draft JSR-302 standard suggests that developers
work with development tool and virtual machine
vendors to address these issues using vendor-
specific (non-standardized) solutions. The annotation
and verification system provided by PERC Pico is an
example of such a vendor-specific solution.
The key issues addressed by the PERC Pico
annotation system are as follows:
Assure that scope memory relationship constraints
associated with all arguments passed in to a method
are clearly identified so that all users of the method
understand the constraints required for reliable
execution of the method.
Assure that all arguments passed to a method
satisfy the scope memory relationship constraints
associated with the invoked method.
Reduce the syntactic clutter associated with entering
and exiting scopes and establishing scope sizes,
with the objective of making code more readable and
more maintainable and reducing the opportunity for
human error.
Enable modular composition and maintainability of
real-time software components by establishing clear
separation of concerns between independently
developed software modules, by inhibiting

incompatible evolution of independently maintained
software modules, and by automating the budgeting
of resources (such as memory and CPU time) that
may be shared between multiple independently
maintained modules.

PERC Pico builds on the notion of the Real-Time
Specification for Java’s (RTSJ) ScopedMemory.
However, allocating, entering, and exiting scopes is
implicit, controlled by syntactic annotations instead
of explicit API calls. Conceptually, every method
introduces a new private scope. However, no scope
is created for methods that perform no local
allocations. Besides simplifying the syntax, the main
benefit of this approach is that it enables
unambiguous static analysis of code to determine
which scopes are relevant to each memory
allocation request. If the RTSJ ScopedMemory APIs
were exposed to the developer, the static analyzer
would need to determine for each new memory
allocation request the API invocation history that
precedes the allocation in order to determine which
scope is to supply memory for the allocation.
Theoretically, this reduces to the halting problem,
which is generally understood to be unsolvable by a
static analysis tool.
PERC Pico uses Java 1.5 meta-data annotations to
augment the traditional Java type system with
information describing the scoped memory
constraints associated with method arguments and
results. Consider the following class definition as an
example:

public class Complex {
 float r, i;
 @ScopedThis
 public Complex(float r, float i) {
 real = r; imaginary = i;
 }
 @CallerAllocatedResult @ScopedPure
 public multiply(Complex arg) {
 float r, i;
 r = this.r*arg.r – this.i*arg.i;
 i = this.r*arg.i + this.i*arg.r;
 return new Complex(r, i);
 }
}

The Complex constructor is declared @ScopedThis,
indicating the programmer’s intention to allow this
constructor to apply to Complex objects allocated
within ScopedMemory. The PERC Pico verifier
enforces that the body of this constructor does
nothing with its implicit this argument that would
violate the expectation that the constructed object
may have a temporary lifetime. In particular, the
verifiers forbids the constructor from saving the value
of this in any static variables or in any instance fields
associated with objects that cannot be proven to

 Page 4/9

have a shorter lifetime than the constructed object
itself. The multiply() method is declared to treat both
this and arg as possibly residing in scoped memory.
Furthermore, the @CallerAllocatedResult annotation
denotes that the result returned from multiply() is
allocated in a scope external to the method itself.
Code written to satisfy the PERC Pico verifier will
also run on a standard edition Java virtual machine,
using heap allocation and garbage collection to
manage temporary objects, provided that all of the
referenced libraries are available. Based on
programmer-supplied annotations, the PERC Pico
verifier determines whether there is a compatible
sizing and use of memory scopes that would enable
the same code to run reliably in an environment that
uses ScopedMemory rather than garbage collection
to satisfy temporary memory allocation needs. In
performing this analysis, the PERC Pico verifier
automatically determines for each memory allocation
which scope to take the memory from. Its
preference is generally to satisfy every memory
allocation from the most local scope that is relevant
to the request.
Assume existence of a static method declared as
shown below:
void doComplex(Complex arg);
Note that the argument is not declared to be
@Scoped. Suppose the PERC Pico verifier is
tasked with analyzing the following code sequence:

Complex a, b, i;

a = new Complex(3.5, 2.4);
i = new Complex(0, 1);
b = i.multiply(i);
doComplex(a);

Note that the above code allocates three Complex
objects which it assigns respectively to the a, i, and b
variables. The PERC Pico verifier’s goal in this case
is to prove that it is safe to perform all allocations
within this method’s local scope. The verifier
identifies a problem when it observes that the
temporary object assigned to local variable a is
passed as an argument to the doComplex() method.
Since that method does not declare its argument to
be @Scoped, the verifier concludes that in this
context, it is not safe to allocate object a in
ScopedMemory. In response to the error message
produced by the PERC Pico verifier, the programmer
has two options. Either he can annotate this context
to allow the object a to be allocated in
ImmortalMemory, or he can add the @Scoped
annotation to the argument of doComplex() and then
deal with any additional issues that might surface
within the implementation of doComplex() as a result
of making that change.

4. The Avionics demonstrator

4.1 Objectives

Within the DIANA project, two demonstrators have
been developed to exercise and validate the
project’s specific mechanisms including the NEP, the
configuration selection mechanisms, the
communication middleware, and others. In this
context, the demonstrator developed by THALES
DAv (Avionics Division) is strongly focused on the
use and benefits of Java as the backbone of the
NEP.
THALES interest on Java is not new. In particular,
the work presented in this paper is the continuation
of previous achievements in the HIJA European
project [9]. Our main objective is actually to (i)
contribute to the acceptance of Java as a language
for embedded real-time systems, and (ii) validate the
feasibility of a ―smooth‖ and iterative development
process based on Java.
Concerning the latter point, we experimented with a
process where software development starts using
full-fledged Java (including language constructs, full
run-time, and the complete standard edition Java
libraries) and moves incrementally to a constrained
version of Java. In this experiment, constraints are
essentially targeted towards a better determinism of
memory management, in time and space. This way,
we expect (i) to benefit from the many features of
standard Java to achieve a high level of generality
and ease of development during the initial project
phases, and (ii) to benefit from the determinism and
safety of real-time versions of Java during the later
development phases.
For instance, we would like the developer to focus
on the functional requirements first, without the
distraction of worrying about timeliness or memory
usage. Once the software specification and low-level
design are frozen, developers turn their attention to
the real-time constraints on time and memory
resources. This approach represents an application
of the general software engineering principle known
as separation of concerns.
As an introduction to this topic, several questions are
addressed below:

 There is a general tendency to organize
software development around models and their
cohorts of semi-formal languages, one clear
objective being to facilitate the automatic
generation of code. In that context, is the choice
of a programming language still an important
issue?
Indeed, automatic code generation is effectively
a very efficient means to shorten the
―specification to product‖ path. However, this is
only a practical solution for few parts of most
applications (e.g., framework-generated code),
or most parts of few applications (e.g., SCADE-

 Page 5/9

generated code). In particular, it does not seem
to be a solution for applications involving
complex data structures and data processing. As
of today, and for the next few years, manual
coding is still the only solution for most
developments.

 Assuming that the programming language is
actually an issue, why use Java instead of Ada
95, Ada 2005, or C?. Even though such question
is legitimate, we will not discuss it. The choice of
a programming language is subjective. This
topic is discussed at length in other forums. In
the context of our experiment, we simply
considered the opinion of the people in charge of
prototyping new functions in our service: they
selected Java for some reasons, and we
consider those reasons to be good.

 The proposed approach seems to rely on the
existence of a continuous transformation
process starting from some ―quick-and-dirty‖
code and ending, magically, with some high
quality code. Isn’t it contradictory with all usual
and admitted practices?
In fact, we are certainly not promoting such a
practice. In our context, ―transformation‖ means
the ―progressive‖ introduction of concerns at the
most appropriate phase of the development
process. Stated another way, we simply want
efforts to be focused on the most important and
unstable ―functional‖ aspects first, and then on
the other, ―non-functional‖ transverse aspects.
Naturally, this operation will require refactoring,
recoding, retesting etc. but we expect the
benefits to be worth the additional efforts.

4.2 The target application
For the demonstration purposes, we selected the
core of the Flight Warning System (FWS) as the
target application. Briefly, the FWS performs the
following main functions:
It acquires state data from other aircraft systems and
determines the occurrence of an abnormal or
emergency situation
It elaborates and manages warning and cautions
alert messages that are displayed on the Engine and
Warning Display (EWD)
It manages the interaction with the crew, via
attention-getter means (aural, master warning light,
master caution light) and a set of buttons located on
the Electronic Flight Control Panel (EFCP). The first
phase is data input and simple computations. In the
actual product, this code is generated automatically
from a semi-formal SCADE model and using Java
would not bring any significant benefits. So, the
experiment focused the second and third phases.
During our experiment, focus has been placed on
memory management. In particular, many important

aspects such as threading, inter-process
communication, or testability have not been
addressed.
The FWS shows fairly simple data flow and object
creation / destruction profile: object creations occur
essentially during an initialization phase that sets up
all the internal data structures representing the
alerts, their relationships (priority), their associated
messages, their aspect (e.g., color).
It also shows a very simple threading model; the
application uses a single periodic thread that
acquires the equipment state (including buttons),
determines the new alerts, manages the actions of
the crew and generates messages to be displayed.
Consequently, extrapolations of evaluation results to
other applications, especially more complex ones,
must be done with extreme care.
The FWS development was a very good illustration
of our approach. Indeed, a first version of the
application written in standard Java was already
available. It had been developed to confirm
customers’ requirements, and validate particular
design choices.
The experiment carried out in DIANA essentially
focus on memory management aspects, for the
following reasons:
Memory management is a complex and error prone
task. Any feature that simplifies this task is
considered to have a strong impact on productivity
and quality.
Memory management is often mentioned as one of
the most important reasons not to use Java in
embedded systems.
Memory management is the domain where Pico is
the most innovative. Note that the applicability and
the application cost of recommended practices for
the usage of object oriented language in avionics —
such as those defined in the OOTiA guidelines [10]
— have not been considered yet. We consider that,
for the most part, those constraints do not depend on
the programming language and, consequently, are
not impacted by the selection of Java instead of
Ada95, for instance.

4.3 How we used PERC Pico
Our activity has essentially been a porting activity,
i.e., the adaptation of an existing code to make it
comply with some real-time constraints. Some
specific development was required when the
platform mechanisms (e.g., serialization) or API
(e.g., containers) used by the original software were
not provided by PERC Pico or were not stable
enough. In that case, development was kept as
simple as possible.
During this porting process, we imposed on
ourselves a constraint to minimize the modifications
to the original Java application, so as to be as
representative as possible of the way we would
actually use Pico in our anticipated operational

 Page 6/9

context. This is a very important point, since it
means that we have had to solve issues rather than
simply preventing them.
Thanks to the simplicity of the application, our
difficulties have been concentrated on two points: to
ensure referential integrity, and to estimate memory
usage.

4.3.1 Ensuring referential integrity
Referential integrity is guaranteed when the
application passes all verifications applied by Pico’s
verifier tool. To achieve this objective, we adopted a
very pragmatic, iterative, approach relying on the
information provided by the PERC Pico verifier and
on our knowledge of the application:

 Use previous verification results (if any) and
operational knowledge of the application to
initiate or refine the application’s annotations

 Check annotations using Pico’s verifier

 If all checks pass or if no error diagnosis has
disappeared since the previous verification, go
to next phase, otherwise, loop to phase 1

 Analyze all remaining irreducible error diagnosis
and demonstrate that they correspond to
conditions that can never occur in operation. By
―demonstration‖, we mean the provision of a
sufficient set of convincing elements. In the case
that developers are able to assert that the PERC
Pico verifier is overly concerned about certain
issues, the developers insert additional
annotations to advise the PERC Pico verifier to
relax its normal enforcement in these special
circumstances.

To initiate the process (first phase 1), we perform a
first and rough annotation phase where:

 We first identify all objects whose life spans the
lifetime of the application, and we place them in
immortal memory. For the remaining objects, we
analyze the benefit/cost of putting them in
immortal memory, both from a memory sizing
point of view and from the impact of this choice
to the allocation site of potentially related
objects.

 Once the previous phase is complete, only
scoped objects remain. So we identify captive
references to scoped objects. A captive
reference is one that is known not to escape the
context in which it was allocated. To do so, we
use both a manual (and painful) analysis of the
code’s data flow, and the verifier itself. In the
latter case, we put the strongest constraint
(―captive scoped‖) on arguments and relax those

constraints (to ―scope‖) until the analyzer does
not reveal any more error.

If this solution is ―pragmatic‖, it is costly, and clearly
not acceptable for a new development. In our
specific case, this was really helpful since the
relations between objects in the existing application
were not fully formalized and described. Important
methodological questions about the way lifespans of
objects must be considered during design and
coding would deserve further studies. Provision of
design patterns would certainly help.

4.3.2 Estimating memory usage
As of today, PERC Pico does not provide an
automatic and static means to estimate memory,
though the capability has been designed and is
anticipated in a future product release. Instead, it
currently relies on software developers to insert
scope sizing annotations or invocations of memory
estimation methods (―sizer()―) and objects
(‖SizeEstimators―). These elements are used to
modularize memory estimation, and provide an
upper-bound of memory usage taking into account
all state variables that may have an impact on
memory usage, including the sizes of all classes that
might need to be instantiated within this scope. In
practice, we first estimate a lower bound of memory
usage by observing the worst case heap usage on a
standard virtual machine. Once this information is
obtained, each class is adorned with an appropriate
―sizer‖ method which may refer to other classes’
sizers, recursively.
A difficulty here lies in the fact that to estimate the
size of memory areas, one has to know in which of
these memory areas PERC Pico decides to place
the objects.

4.4 Benefits and issues
4.4.1 Benefits
Transition from standard Java to PERC Pico
requires very few modifications of the original
software architecture and code. In particular, the
application remains mainly free from memory
management code (creation, deletion). Even though
―sizer()― methods‖ or ―SizeEstimators― objects are
needed to support memory usage estimation, they
interfere only lightly with the application code. This
has to be compared to the RTSJ where memory
management is essentially under the developer’s
control: he / she has to create the scoped memory
areas, to create the Runnable covering the code to
be executed in the memory area, to enter the scope,
to take care of the reference transfers between
memory areas, etc.
Capability to run PERC Pico annotated Java code on
a standard Java virtual machine via some simple API
stubbing is another interesting property. It makes it
very easy to execute regression tests using all the

 Page 7/9

capabilities of a standard Java platform. It also
allows a very easy switching between the standard
Java and PERC Pico development phases.
Furthermore, it ensures the ported code to be usable
in any Java platform, including those that rely on a
real-time garbage collector.
PERC Pico supports a modular management of
memory. Modularity is supported by the annotation
scheme which is used to express a memory
management contract between a method user and a
method provider. This represents a significant
advantage to the RTSJ’s scopes, which introduce
strong and implicit dependencies between different
code parts, and makes the application very fragile.
The PERC Pico verifier guarantees that no
referential integrity problem will ever occur once the
verification is successful. This represents another
significant advantage with respect to a RTSJ
platform which cannot ensure the absence of
referential integrity errors at compile time. Instead, it
relies on runtime checks and appropriate exception
handling by the user. Even though handling the
exception allows a safe and smooth handling of
errors, it does not ensure per se the correct behavior
of the software. We have then to compare the extra
development cost (annotations) of PERC Pico to the
extra design and verification cost of the RTSJ, taking
into account the fact that in the latter case, there will
be no guarantee for safety.

4.4.2 Issues
The PERC Pico learning curve is steep, for various
reasons, among which:

 The concepts, Pico is based on, are complex.
They must be supported by a clear and rigorous
documentation written for the end-user, that is to
say the application developer.

 Translating those concepts into code is another
difficulty that could well be alleviated thanks to
design, coding patterns, or tools.

 Errors signaled by PERC Pico are hard to
diagnose and correct. More often than not, one
has to ―play the role of the verifier‖ to understand
why a particular error message is reported.

The latter issue is even more critical when
considering the apparent pessimism of the analysis
which translates to the following frequent
observation: The verifier rejects this assignment
even though I know that the assignment will always
comply with the RTSJ referential integrity condition.
In fact, the analyzer can only deduce potential errors
from the information it has access to, i.e., the
annotations and the code, just as any compiler
would. So, the more expressive the annotations are
the more accurate is the diagnosis. The lack of

expressiveness of annotations, grounded to some
extent to the limits of Java annotation mechanism,
eventually leads the developer to consider the
diagnosis as a ―false positive‖ (to use a terminology
borrowed from the abstract interpretation domain, in
a way slightly abusive)2, whereas it is simply a direct
consequence of the interpretation of the annotations.
Additionally, if the approach based on ―local‖
annotations expressing ―local‖ properties is imposed
by the requirement for modularity, it also leads to
conservative estimation if those properties are
insufficiently accurate. In practice, this means that
the verifier may reject a statement because it
believes (from what it ―knows‖) that referential
integrity cannot be ensured whereas the developer
knows it for sure. Intuitively, the remedy seems to
depend on an improvement the code annotation
scheme, to allow more information to be provided by
the developer to the analyzer, in the same way as a
programming language with a sophisticated typing
system will support a much better diagnosis than a
language loosely typed, considering the same target
level of safety at the end.
A ―pessimistic diagnosis‖ is acceptable as long as
(i) it does not occur too often and (ii) the difficulty to
demonstrate that no failure can ever occur in
operation despite the diagnosis is reasonable.
Unfortunately, as of today, whenever the analyzer
rejects a piece of code, a great deal of energy must
be spent to understand the problem, to demonstrate
its innocuousness or to refactor the code or the
annotations to make it disappear. One clearly needs
indication and hints to track the ―origin‖ of the
diagnosis.
Generally speaking, the other, and certainly better,
solution would be for the designer to carefully take
into account memory management constraints
during the design, so as to ease the task of the
―verifier‖ later3. However, this was not the context of
our experiment, which takes as a working hypothesis
to minimize the refactoring of the code.
The estimation of memory usage is another point
where things could be improved. Currently, PERC
Pico’s documented annotations and mechanisms to

2 Developers familiar with traditional static analysis or

abstract interpretation tools tend to view PERC Pico’s
conservative enforcement of constraints as a
misunderstanding of their intent. PERC Pico’s support
team tends to view this situation as an inconsistency
between intent and annotation, requiring that
programmers enhance or refine the annotations. This
conflict of perspective highlights the subtle complexity of
the verification system.

3 In fact, the issue is more fundamental: PERC Pico relies

on a computational model (a stack automaton) that is not
as expressive as the one of standard Java (a Turing
machine). In practice, this means that the ―translation‖ of
code may simply be impossible without a strong
refactoring.

 Page 8/9

support static analysis of memory usage seem to be
very promising but, unfortunately, they are not fully
implemented. So, the developer ends up with code
for which referential integrity is verified, but for which
some memory allocation constraints may be
violated, leading to, potential, very bad effects at the
application level. So, and until Pico’s memory
estimation mechanisms are fully implemented,
memory dimensioning still requires a ―classical‖
verification approach (testing, inspection, etc.) which
is certainly simpler than ensuring referential integrity,
but which deserves a specific testing strategy.
Furthermore, if memory usage estimation is
―relatively‖ easy when the location of allocations is
managed by the user, it is much harder when these
locations are determined by the compilation chain.
Besides time and memory determinism, which have
been addressed previously, certification, more
generally, concerns compliance of Pico’s runtime
and libraries with the DO178 (currently, issue B and
soon, issue C) objectives. This current version of
PERC Pico does not come with any qualification
case. However, even if we cannot show the artifacts
required for certification (SDP, PSAC, SAS, etc.),
data provided by Atego give hints on the fact that
they could be obtained, and at a reasonable cost:
The runtime represents around 6700 Lines of Code
(LOC).
For the C part, the runtime represents around 2700
LOC (2000 LOC for ―port.c‖, which is customized for
each operating system and 700 for platform.c).
The API represents around 27000 LOC for java.lang
package, and 13000 LOC for the sc package.

These values are reasonable small with respect to
the size of the applications themselves.
A more controversial point concerns the qualification
level of the code generator and verifier. In particular,
to what extent can we take credit from the
verifications performed by the verifier to reduce the
test activities on the generated code?
This questions leads to two observations. First, the
complexity of the properties to be verified makes it
very hard to trust the completeness of Pico’s
verifications, even though those properties are
expressed at length in Pico’s documentation. As the
verifier not only checks compliance with referential
integrity, but also manages the allocations, this
process shall come with strong evidences that it is
built on a sound —possibly, mathematical — basis.
Second, verification and code generation processes
seem to be tightly coupled: the code generator uses
information provided by the code verifier to
determine the scope. So, if there is an error in the
verifier, (i) an error in the source code may be left
undetected (the verifier is considered as a
verification tool), (ii) the generated code itself may be
erroneous (the verifier is considered as a part of the
code generation process). It would be highly

desirable to have a tighter integration between the
PERC Pico verifier and the PERC Pico code
generator, and to ―qualify‖ this integration for use by
safety critical developers.
More fundamentally, it seems that one can hardly
consider Pico’s verifier to be a ―classical‖ verification
tool according to the DO178 definition, so submitted
to the significantly relaxed verification constraints.
Indeed, the probability to introduce an error at
memory management level (e.g., a reference
assignment that violates referential integrity or a
memory allocation that is lower than the actual
memory usage) is (i) very high, and (ii) the error
detection coverage of such errors by testing is fairly
low. Consequently, even though a double error is
needed for an error to show in the product, the
probability of such event cannot be considered
negligible.
Finally, since PERC Pico’s static verifier does not
operate on the final object code but on the
intermediate Java byte code, verification activities
targeted to memory management errors and applied
on the final object code are still necessary. A testing
strategy focused on memory management needs to
be defined.
We end this brief analysis of PERC Pico’s pros and
cons by a last point about standardization. In effect,
PERC Pico does not comply with the RTSJ or the
future SCSJ standard (which is based on the RTSJ).
From the strict perspective of porting standard Java
applications, this should not be so strong an issue
since the standard Java version of an application
and the PERC Pico version only differ at annotation
level. In this regard, moving from PERC Pico to the
SCSJ (JSR-302) will be no more complicated than
moving from standard Java to the RTSJ. However,
this divergence is actually a problem in the general
case. Convergence of PERC Pico APIs to the SCSJ,
and the capability to make both SCSJ and PERC
Pico applications to cohabit in different SCSJ
missions would offer an opportunity to benefit from
both technologies. Atego has announced that this is
their intended evolution of PERC Pico once the JSR-
302 standard is finalized.

5. Conclusion

In this paper, we have briefly presented the main
features, some specific porting aspects and some
evaluation results of PERC Pico, Atego’
implementation of Java for real-time safety critical
systems.
Java and its implementation in PERC Pico is a key
technological brick of DIANA’s neutral execution
platform. It decouples the application code from the
execution platform in a more complete way than any
application / executive API would. The development
of the JVM to APEX interface raises few difficulties
concentrated on very few points, such as threading

 Page 9/9

and priority inheritance in particular. This work being
done, PERC Pico can now be used on any APEX
compliant platform.
Concerning the application to JVM interface, PERC
Pico’s modular approach of memory management
supports a smooth transition from a code using
standard Java memory management model to a
code compatible with the safety and determinism
constraints of real-time avionics systems. This was
an important objective of the experiment.
PERC Pico relies on a simple memory model, a set
of annotations, and a powerful static verification tool.
It is expected to compare advantageously to
solutions based on scoped memory, in particular
when modularity and runtime safety — or, the other
way round, testing effort — are concerned.
However, an important effort is necessary to become
familiar with the PERC Pico concepts, and become
proficient in their application. For the most part, this
is due to the difficulties to understand the verifiers’
diagnostics, and to translate them to corrections at
the application level. This leads to the paradoxical
situation where memory management issues are first
removed from the developer considerations, but
reintroduced in a later development phase. In this
later development phase, it becomes necessary to
insert scope annotations, dimension the sizes of
memory areas, and deal with any ―false positive‖
error messages reported by the PERC Pico verifier.
The challenges of this later development phase
significantly reduce the potential benefits of the
approach.
Concerning certification, although this aspect has not
been completely covered yet, the simplicity of PERC
Pico should strongly limit the effort to establish a
qualification case. However, some interrogations
remain concerning the completeness of the
verifications performed by PERC Pico verifier, the
relation between code production and verification,
and the actual qualification credit that can be sought
using this tool.
A programming language is a long-term investment.
To introduce a new language, many aspects shall be
taken into account: technical aspects such as
expressiveness, performance, robustness, safety,
etc., but also non technical aspects such as
availability of educated developers, availability and
maintainability of development environments, tools,
libraries, etc. Regarding many of those aspects,
Java is a very good candidate, and some important
and recurrent criticisms of Java are now obsolete
thanks to the combined efforts on virtual machines,
verification means, and runtime libraries. What is still
missing for a wider acceptance of Java in the
mission critical domain is a common and
collaborative effort of industrial partners and
technology providers towards a runtime and a set of
API components developed according to applicable

development standards (e.g., DO178C, CEI 61508
and derivatives).

6. Acknowledgement

We thank Olivier Charrier, from Wind River who
helped us running the avionics demonstrator on
VxWorks653.

7. References

[1] DIANA IST- FP6 project, http://diana.skysoft.pt

[2] Object Management Group, Data Distribution Service
for Real-time Systems, OMG specification, omg/07-
01-01.

[3] Object Management Group, Model Driven
Architecture guide, omg/03-06-01.

[4] Airlines Electronic Engineering Committee (AEEC),
Avionics Application Software Standard Interface
(ARINC Specification 653 Part 1 – Required
Services), ARINC Inc., March 2006.

[5] JSR 302 – http://jcp.org/en/jsr/detail?id=302

[6] Szyperski, C, Component Software: Beyond Object-
Oriented Programming. 2nd ed. Addison-Wesley
Professional, Boston, 2002.

[7] Federal Aviation Administration, Advisory Circular on
Reusable Software Components (= AC 20-RSC),
June, 2003.

[8] The HIJA consortium: High Integrity Java, project
home page at: http://www.hija.info

[9] Hu, E. Y., Jenn, E., Valot, N., and Alonso, A. 2006.
Safety critical applications and hard real-time profile
for Java: a case study in avionics. In Proceedings of
JTRES '06, vol. 177. ACM, New York, NY, 125-134.

[10] Federal Aviation Administration, Object Oriented
Technology in Aviation (OOTiA), Vol. 1-4,
http://www.faa.gov/aircraft/air_cert/design_approvals/
air_software/oot/.

8. Glossary

AIDA: Architecture for Independent Distributed Avionics

APEX: ARINC 653 Application Executive

ARINC 653: Avionics Application Software Standard

Interface

FWS: Flight Warning System

JVM: Java Virtual Machine

JSR 302: Java Specification Request in charge of

defining the Safety Critical Specification for Java

NEP: Neutral Execution Platform

PERC Pico: Virtual Machine for Java real-time and
safety critical systems

RTSJ: Real Time Specification for Java

SCSJ: Safety Critical Specification for Java

http://diana.skysoft.pt/
http://jcp.org/en/jsr/detail?id=302
http://www.hija.info/
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/oot/
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/oot/

